Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil





Red neuronal de aprendizaje profundo detecta rápidamente infecciones por COVID-19 mediante imágenes de rayos X

Por el equipo editorial de HospiMedica en español
Actualizado el 30 Nov 2021
Print article
Ilustración
Ilustración

Una red neuronal de aprendizaje profundo puede detectar rápidamente infecciones por COVID-19 mediante imágenes de rayos X.

La red neuronal de aprendizaje profundo llamada CORONA-Net fue desarrollada por científicos de la Universidad de la Columbia Británica (Kelowna, BC Canadá) para ayudar a los médicos que no tienen acceso a las pruebas de reacción en cadena de la polimerasa (PCR) y necesitan una forma de detectar rápidamente a los pacientes con COVID-19. A medida que la COVID-19 sigue apareciendo en los titulares de todo el mundo, las personas se han acostumbrado a la idea de realizar pruebas rápidas para determinar si han sido infectadas. La prueba viral solo indica si existe una infección actual, pero no si hubo una infección previa. La prueba de anticuerpos alternativa utiliza una muestra de sangre y puede detectar si hubo una infección previa con el virus SARS-CoV-2, incluso si no hay síntomas actuales. Sin embargo, la prueba de PCR puede ser poco común en muchos países y generalmente cuesta varios cientos de dólares cada vez. Los médicos de todo el mundo necesitan una forma de evaluar rápidamente a los pacientes para detectar la COVID-19 para que puedan comenzar el tratamiento inmediato para los pacientes con el virus

Los investigadores de UBC Okanagan, que dicen que las pruebas rápidas pueden ser limitadas y costosas en muchos países, están probando otro método de prueba. Y creen, gracias a la inteligencia artificial, que han encontrado uno. El equipo de investigación ha desarrollado CORONA-Net, una red neuronal de aprendizaje profundo que puede detectar rápidamente infecciones por COVID-19 mediante imágenes de rayos X. En muchos países, las personas optan por la radiografía de tórax debido al costo de una prueba de PCR o su falta de disponibilidad. Sin embargo, a veces es difícil que un especialista examine la radiografía y la detección precisa de la infección puede llevar tiempo. Pero al utilizar CORONA-NET, el sistema de inteligencia artificial puede marcar los casos sospechosos para que se realice un seguimiento rápido y se examinen rápidamente.

La arquitectura CORONA-Net desarrollada aumenta sustancialmente la sensibilidad y el valor predictivo positivo (VPP) de las predicciones, lo que convierte a CORONA-Net en una herramienta valiosa cuando se trata de utilizar radiografías de tórax para diagnosticar la COVID-19. Según los investigadores, el CORONA-Net desarrollado pudo producir resultados con una precisión de más del 95% en la clasificación de casos de COVID-19 a partir de imágenes digitales de rayos X de tórax. La precisión de la detección de COVID-19 por CORONA-Net seguirá aumentando a medida que crezca el conjunto de datos. CORONA-Net puede mejorarse automáticamente con el tiempo y autoaprenderse para ser más preciso.

“La COVID-19 generalmente causa neumonía en los pulmones humanos, que se puede detectar en imágenes de rayos X. Estos conjuntos de datos de rayos X, de personas con neumonía causada por COVID-19, de personas con neumonía causada por otras enfermedades, así como radiografías de personas sanas, permiten la posibilidad de crear redes de aprendizaje profundo que pueden diferenciar entre imágenes de personas con COVID-19 y personas que no tienen la enfermedad”, dijo el estudiante graduado Sherif Elbishlawi, quien ayudó a desarrollar CORONA-Net.

“Los resultados del conjunto de pruebas se obtuvieron y se pueden ver con una sensibilidad del 100% a la clase COVID-19. Había una sensibilidad del 95% en la clasificación de la clase de neumonía y una sensibilidad del 95% en la clasificación de la clase normal”, agregó. "Estos resultados muestran que CORONA-Net ofrece una predicción muy precisa con la mayor sensibilidad a la clase COVID-19".

Enlaces relacionados:
Universidad de la Columbia Británica

Miembro Oro
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
12-Channel ECG
CM1200B
New
X-ray Diagnostic System
FDX Visionary-A
New
Cannulating Sphincterotome
TRUEtome

Print article

Canales

Cuidados Criticos

ver canal
Imagen: El investigador Vincent Tam examina las bacterias para optimizar el uso clínico de antibióticos para combatirlas (Foto cortesía de UH College of Pharmacy)

Dispositivo de monitoreo podría superar a las superbacterias resistentes a los antibióticos

Las infecciones por bacterias gramnegativas son cada vez más difíciles de tratar, especialmente en entornos hospitalarios, donde pueden provocar afecciones como infecciones del tracto urinario,... Más

Técnicas Quirúrgicas

ver canal
Imagen: los electrodos de catéter se pueden entregar y guiar hacia los espacios ventriculares y la superficie del cerebro para la estimulación eléctrica (foto cortesía de la Universidad Rice)

Interfaz neural novedosa ayuda a diagnosticar y tratar trastornos neurológicos con riesgos quirúrgicos mínimos

Los métodos tradicionales para interactuar con el sistema nervioso generalmente implican crear una abertura en el cráneo para acceder al cerebro. Ahora, los investigadores han presentado... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.