Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil




Un sistema predictivo de historia clínica electrónica podría pronosticar los eventos de salud

Por el equipo editorial de HospiMedica en español
Actualizado el 05 Mar 2019
Print article
Imagen: El aprendizaje profundo de Google pronto podría ayudar a predecir eventos de salud (Fotografía cortesía de Google).
Imagen: El aprendizaje profundo de Google pronto podría ayudar a predecir eventos de salud (Fotografía cortesía de Google).
Google (Mountain View, CA, EUA) ha solicitado una patente para un sistema de aprendizaje automático profundo que utiliza datos longitudinales de las historias clínicas electrónicas (HCE) para predecir eventos de salud futuros.

El sistema de Google agrega y almacena datos de las HCE para poblaciones y pacientes individuales, utilizando la clasificación del Nivel de Salud Siete (HL7) y el marco del formato de recursos de interoperabilidad de salud rápida (FHIR, por sus siglas en inglés) para estandarizar los datos extraídos de HCE dispares, incluidas las notas de texto libre. El modelo de aprendizaje profundo para cada predicción puede leer todos los puntos de datos desde el primero hasta el más reciente y aprende para comprender qué datos ayudan a predecir el resultado.

Según Google, el sistema predictivo podría ayudar a los médicos a priorizar a los pacientes y mostrar qué información buscar en la historia de un paciente, ayudando así a los proveedores de atención médica a identificar áreas de preocupación o a intervenir para reducir la probabilidad de un evento adverso. Además, el sistema de aprendizaje profundo podría formar la base para un sistema de apoyo a la decisión clínica que podría ayudar a los médicos a identificar a los pacientes que más necesitan ayuda y mostrar los marcadores clínicos clave que subyacen en las predicciones.

En un ensayo realizado por Google en colaboración con la Universidad de California, San Francisco (UCSF; EUA), la Facultad de Medicina de la Universidad de Stanford (Stanford; CA, EUA), y la Universidad de Chicago (IL, EUA), el sistema predictivo de HCE procesó 46.800 millones de puntos de datos recolectados de 216.221 pacientes adultos, que predicen con éxito el 95% de los eventos de mortalidad hospitalaria, el 77% de los reingresos no planificados a los 30 días, el 86% de casos de estancia prolongada, superior a la de los modelos predictivos tradicionales.

“Los médicos ya están inundados de alertas y solicitudes sobre su atención; ¿podrían estos modelos ayudar a los médicos con tareas tediosas y administrativas para poder concentrarse mejor en el paciente que está frente a ellos o en aquellos que necesitan atención adicional?”, preguntaron Alvin Rajkomar MD, y Eyal Oren PhD, de Google AI, en el blog de la compañía. “¿Podemos ayudar a los pacientes a obtener atención de alta calidad sin importar dónde la busquen? Esperamos colaborar con los médicos y pacientes para encontrar las respuestas a estas preguntas y más”.

Enlace relacionado:
Google
Universidad de California, San Francisco
Facultad de Medicina de la Universidad de Stanford
Universidad de Chicago




Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Miembro Oro
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Portable Patient Monitor
CMS9200PLUS
New
6-Channel ECG System
SE600

Print article

Canales

Cuidados Criticos

ver canal
Imagen: Arthroba es un dispositivo liviano con batería que se puede usar fácilmente alrededor de la rodilla (foto cortesía de Georgia Tech)

Dispositivo portátil alimentado por batería monitorea el dolor en las articulaciones

Las lesiones de tobillo son comunes entre los estadounidenses activos. Cada día, aproximadamente 25.000 personas sufren esguinces de tobillo y el 25% de los estadounidenses sufren regularmente dolor... Más

Técnicas Quirúrgicas

ver canal
Imagen: dispositivo de férula traqueobronquial bioreabsorbible impreso en 3D (foto cortesía de Michigan Medicine)

Implante biorreabsorbible pionero ayuda a niños con una rara enfermedad respiratoria

La traqueobroncomalacia es una enfermedad rara y potencialmente mortal en la que el cartílago de la tráquea o de los bronquios principales se desarrolla de forma anormal, provocando el colapso... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.