Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil





Modelo de computadora con IA usa los datos de los pacientes para predecir quién tiene más probabilidades de morir por COVID-19 con una exactitud del 90%

Por el equipo editorial de HospiMedica en español
Actualizado el 09 Feb 2021
Print article
Ilustración
Ilustración
Según una investigación nueva, a través de los datos de pacientes, la inteligencia artificial (IA) puede hacer una evaluación 90% exacta de si una persona morirá de COVID-19 o no.

Los resultados de un estudio recientemente publicado por investigadores de la Universidad de Copenhague (Copenhague, Dinamarca) demuestran que, basándose en los datos de los pacientes, la IA puede, con hasta un 90% de certeza, determinar si una persona no infectada morirá de COVID-19 o no, si tienen la mala suerte de infectarse. Una vez ingresado en el hospital con COVID-19, la computadora puede predecir con un 80% de exactitud si la persona necesitará un respirador. El índice de masa corporal (IMC), el sexo y la presión arterial alta se encuentran entre los factores más ponderados. La investigación se puede utilizar para predecir la cantidad de pacientes en los hospitales que necesitarán un respirador y determinar quién debería ser el primero en la fila para recibir una vacuna.

Los investigadores alimentaron un programa de computadora con datos de salud de 3.944 pacientes daneses con COVID-19. Esto entrenó a la computadora para reconocer patrones y correlaciones en las enfermedades anteriores de los pacientes y en sus reacciones contra la COVID-19. Las enfermedades y factores de salud que, según el estudio, tienen mayor influencia en si un paciente termina en un respirador después de infectarse con COVID-19 son en orden de prioridad: IMC, edad, hipertensión arterial, género masculino, enfermedades neurológicas, EPOC, asma, diabetes y enfermedades cardíacas. Los investigadores esperan que la IA pronto pueda ayudar a los hospitales al predecir continuamente la necesidad de respiradores.

“Trabajamos para lograr el objetivo de poder predecir la necesidad de respiradores con cinco días de anticipación al brindar acceso a la computadora a los datos de salud de todos los positivos de COVID en la región”, dijo el profesor Mads Nielsen del Departamento de Ciencias de la Computación de la Universidad de Copenhague. “La computadora nunca podrá reemplazar la evaluación médica, pero puede ayudar a los médicos y hospitales a ver a muchos pacientes infectados por COVID-19 a la vez y establecer prioridades continuas”.

Enlace relacionado:
Universidad de Copenhague

Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Miembro Oro
12-Channel ECG
CM1200B
New
Auditory Evoked Potential Device
Bio-logic NavPRO ONE
New
Needle-Free IV Connector Technology
Clave

Print article

Canales

Cuidados Criticos

ver canal
Imagen: el gemelo digital del corazón ayuda a mejorar el diagnóstico y el tratamiento de las arritmias cardíacas (foto cortesía de UPV)

Gemelo cardíaco del corazón mejora el diagnóstico y tratamiento de arritmias cardíacas

Millones de personas en todo el mundo padecen arritmias cardíacas. Tradicionalmente, la electrocardiografía (ECG) se ha utilizado para detectar las contracciones ventriculares prematuras... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.