Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil





Algoritmo de aprendizaje automático entrenado en imágenes de artículos corrientes detecta la COVID-19 en las radiografías de tórax con una exactitud del 99%

Por el equipo editorial de HospiMedica en español
Actualizado el 02 Jul 2021
Print article
ilustración
ilustración
Una nueva investigación que utiliza el aprendizaje automático en imágenes de artículos cotidianos ha mejorado la exactitud y la velocidad de detección de enfermedades respiratorias, reduciendo la necesidad de conocimientos médicos especializados.

En un estudio realizado por investigadores de la Universidad Edith Cowan (Perth, Australia), los resultados de esta técnica, conocida como aprendizaje por transferencia, lograron una tasa de éxito del 99,24% para detectar la COVID-19 en las radiografías de tórax. El estudio aborda uno de los mayores desafíos en el aprendizaje automático de reconocimiento de imágenes: algoritmos que necesitan grandes cantidades de datos, en este caso imágenes, para poder reconocer ciertos atributos con exactitud.

Según los investigadores, esto fue increíblemente útil para identificar y diagnosticar afecciones médicas emergentes o poco comunes. La clave para reducir significativamente el tiempo necesario para adaptar el enfoque a otros problemas médicos fue entrenar previamente el algoritmo con la gran base de datos ImageNet. Los investigadores esperan que la técnica se pueda refinar aún más en investigaciones futuras para aumentar la exactitud y reducir aún más el tiempo de entrenamiento.

“Nuestra técnica tiene la capacidad no solo para detectar la COVID-19 en las radiografías de tórax, sino también otras enfermedades del tórax como la neumonía. La hemos probado en 10 enfermedades diferentes del tórax, logrando resultados muy exactos”, dijo el investigador de la Facultad de Ciencias de la ECU, el Dr. Shams Islam. “Normalmente, es difícil para los métodos basados en IA realizar la detección de enfermedades del tórax con exactitud porque los modelos de IA necesitan una gran cantidad de datos de entrenamiento para comprender las firmas características de las enfermedades. Los datos deben ser anotados cuidadosamente por expertos médicos, este no es solo un proceso engorroso, sino que también implica un costo significativo. Nuestro método evita este requisito y aprende modelos exactos con una cantidad muy limitada de datos anotados. Si bien es poco probable que esta técnica reemplace las pruebas rápidas de COVID-19 que usamos ahora, existen importantes implicaciones para el uso del reconocimiento de imágenes en otros diagnósticos médicos”.

Enlace relacionado:
Universidad Edith Cowan

Miembro Oro
12-Channel ECG
CM1200B
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Anterior Cervical Plate System
XTEND

Print article

Canales

Cuidados Criticos

ver canal
Imagen: El investigador Vincent Tam examina las bacterias para optimizar el uso clínico de antibióticos para combatirlas (Foto cortesía de UH College of Pharmacy)

Dispositivo de monitoreo podría superar a las superbacterias resistentes a los antibióticos

Las infecciones por bacterias gramnegativas son cada vez más difíciles de tratar, especialmente en entornos hospitalarios, donde pueden provocar afecciones como infecciones del tracto urinario,... Más

Técnicas Quirúrgicas

ver canal
Imagen: los electrodos de catéter se pueden entregar y guiar hacia los espacios ventriculares y la superficie del cerebro para la estimulación eléctrica (foto cortesía de la Universidad Rice)

Interfaz neural novedosa ayuda a diagnosticar y tratar trastornos neurológicos con riesgos quirúrgicos mínimos

Los métodos tradicionales para interactuar con el sistema nervioso generalmente implican crear una abertura en el cráneo para acceder al cerebro. Ahora, los investigadores han presentado... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.