Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil





Herramienta de IA que detecta anomalías en imágenes médicas podría ayudar a los médicos a detectar el inicio de la neumonía por COVID-19 en los rayos X

Por el equipo editorial de HospiMedica en español
Actualizado el 27 Oct 2021
Print article
Imagen: Herramienta deIA que detecta anomalías en imágenes médicas podría ayudar a los médicos a detectar el inicio de la neumonía COVID-19 en rayos X (Fotografía cortesía de Nina Shvetsova et al./IEEE Access)
Imagen: Herramienta deIA que detecta anomalías en imágenes médicas podría ayudar a los médicos a detectar el inicio de la neumonía COVID-19 en rayos X (Fotografía cortesía de Nina Shvetsova et al./IEEE Access)

Los científicos han entrenado una red neuronal para detectar anomalías en imágenes médicas para ayudar a los médicos a examinar innumerables exploraciones en busca de patologías, incluidos signos de patología en los pulmones, como la aparición de la neumonía COVID-19.

El nuevo método desarrollado por científicos de Skoltech (Moscú, Rusia), Philips Research (Ámsterdam, Países Bajos) y la Universidad Goethe de Frankfurt (Frankfurt, Alemania) está adaptado a la naturaleza de las imágenes médicas y tiene más éxito en detectar anomalías que soluciones de uso general. La detección de anomalías en la imagen es una tarea que surge en el análisis de datos en muchas industrias. Sin embargo, las exploraciones médicas plantean un desafío particular. Es mucho más fácil para los algoritmos encontrar, digamos, un automóvil con una llanta pinchada o un parabrisas roto en una serie de imágenes de automóviles que saber cuál de las radiografías muestra signos tempranos de patología en los pulmones, como la aparición de la neumonía por COVID-19.

Los científicos estudiaron cuatro conjuntos de datos de radiografías de tórax e imágenes de microscopía de histología de cáncer de mama para validar la universalidad del método en diferentes dispositivos de imagen. Si bien la ventaja obtenida y la precisión absoluta variaron ampliamente y dependieron del conjunto de datos en cuestión, el nuevo método superó sistemáticamente a las soluciones convencionales en todos los casos considerados. Lo que distingue al nuevo método de los competidores es que busca "percibir" la impresión general que podría tener un especialista que trabaja con los escaneos al identificar las mismas características que afectan las decisiones de los anotadores humanos.

Lo que también distingue al estudio es la receta propuesta para estandarizar el enfoque del problema de detección de anomalías en imágenes médicas para que diferentes grupos de investigación puedan comparar sus modelos de manera consistente y reproducible. Según los científicos, su enfoque, los codificadores automáticos de percepción profunda, es fácil de trasladar a una amplia gama de otros escaneos médicos, más allá de los dos tipos utilizados en el estudio, porque la solución se adapta a la naturaleza general de tales imágenes. Es decir, es sensible a las anomalías a pequeña escala y utiliza algunos de sus ejemplos en el entrenamiento.

"Proponemos utilizar lo que se conoce como capacitación débilmente supervisada", dijo el profesor de Skoltech Dmitry Dylov, director del Grupo de Imágenes Computacionales del Instituto y autor principal del estudio. “Dado que no se encuentran disponibles dos clases claramente definidas, esta tarea suele ser tratada con modelos no supervisados ​​o fuera de distribución. Es decir, los casos anómalos no se identifican como tales en los datos de entrenamiento. Sin embargo, tratar la clase anómala como una completa desconocida es en realidad muy extraño para un problema clínico, porque los médicos siempre pueden señalar algunos ejemplos anómalos. Entonces, mostramos algunas imágenes anormales a la red para desatar el arsenal de métodos débilmente supervisados, y ayudó mucho. Incluso un solo escaneo anómalo por cada 200 normales es muy útil, y esto es bastante realista ".

"Nos complace que la asociación Philips-Skoltech nos permita abordar desafíos como este que son de gran relevancia para la industria del cuidado de la salud", dijo Irina Fedulova, coautora del estudio y directora de la rama de investigación de Philips en Moscú. “Esperamos que esta solución acelere considerablemente el trabajo de los histopatólogos, radiólogos y otros profesionales médicos que enfrentan la tediosa tarea de detectar pequeñas anomalías en grandes conjuntos de imágenes. Al someter los escaneos a un análisis preliminar, las imágenes obviamente no problemáticas se pueden eliminar, dando al experto humano más tiempo para concentrarse en los casos más ambiguos ".

Enlaces relacionados:
Skoltech
Philips Research
Universidad Goethe de Frankfurt

Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
Mattress Replacement System
Carilex DualPlus
New
LED Examination Lamp
Clarity 50 LED

Print article

Canales

Cuidados Criticos

ver canal
Imagen: El investigador Vincent Tam examina las bacterias para optimizar el uso clínico de antibióticos para combatirlas (Foto cortesía de UH College of Pharmacy)

Dispositivo de monitoreo podría superar a las superbacterias resistentes a los antibióticos

Las infecciones por bacterias gramnegativas son cada vez más difíciles de tratar, especialmente en entornos hospitalarios, donde pueden provocar afecciones como infecciones del tracto urinario,... Más

Técnicas Quirúrgicas

ver canal
Imagen: los electrodos de catéter se pueden entregar y guiar hacia los espacios ventriculares y la superficie del cerebro para la estimulación eléctrica (foto cortesía de la Universidad Rice)

Interfaz neural novedosa ayuda a diagnosticar y tratar trastornos neurológicos con riesgos quirúrgicos mínimos

Los métodos tradicionales para interactuar con el sistema nervioso generalmente implican crear una abertura en el cráneo para acceder al cerebro. Ahora, los investigadores han presentado... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.