Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil





Estudio encuentra que los algoritmos computacionales podrían transformar el diagnóstico y la atención de la COVID-19

Por el equipo editorial de HospiMedica en español
Actualizado el 12 Jan 2022
Print article
Ilustración
Ilustración
Investigadores que ensayaban la eficacia de los algoritmos para el diagnóstico de la COVID-19 han descubierto que pueden ayudar a detener la propagación de la enfermedad al permitir la identificación temprana de nuevos casos.

El estudio realizado por investigadores de la Universidad de Eswatini (Kwaluseni, Eswatini) encontró que los algoritmos computacionales podrían transformar el diagnóstico y la atención de la COVID-19 para los países de ingresos bajos.

Con la aparición de nuevas variantes de COVID-19 y el aumento continuo de las infecciones, se requieren con urgencia sistemas de software de diagnóstico efectivos para respaldar los servicios de análisis de virus cada vez más sobrecargados. Además, estos sistemas de software pueden ayudar a detener la propagación de la COVID-19 al permitir la identificación temprana de nuevos casos. Esto puede ser particularmente importante en países de bajos ingresos donde el personal médico y las instalaciones son limitados.

Los algoritmos computacionales también pueden desempeñar un papel valioso en la identificación de casos que los métodos tradicionales de diagnóstico clínico pueden pasar por alto; por ejemplo, infecciones en personas con ciertas enfermedades subyacentes. Si bien los modelos de inteligencia artificial ya están disponibles para respaldar el diagnóstico de la COVID-19, la mayoría se utilizan para interpretar datos de imágenes de rayos X y no siempre son efectivos en el diagnóstico durante la etapa inicial, cuando los sistemas respiratorio y cardiovascular del paciente pueden mostrar pocos signos del virus.

En el estudio, los investigadores probaron la capacidad de siete algoritmos computacionales para diagnosticar la COVID-19 en una etapa temprana, según los siguientes síntomas comunes: fiebre o escalofríos, tos, falta de aliento o dificultad para respirar, fatiga, dolores musculares o corporales, dolor de cabeza, pérdida del gusto o del olfato, dolor de garganta, congestión o secreción nasal, náuseas o vómitos y diarrea Los investigadores encontraron que los algoritmos Multilayer Perceptron, Fuzzy Cognitive Map y Deep Neural Network superaron a Logistic Regression, Naïve Bayes, Decision Tree y Support Vector Machine. Los investigadores creen que estos hallazgos podrían guiar los desarrollos futuros de software.

“Esta información podría adoptarse para desarrollar un software basado en inteligencia que tanto el personal médico como los pacientes puedan usar para el diagnóstico temprano de la COVID-19 cuando estos síntomas están presentes. En el momento en que realizamos esta investigación, no pudimos encontrar ningún otro estudio que hubiera aplicado alguna de las técnicas inteligentes enumeradas para el diagnóstico de COVID-19 utilizando estos síntomas comunes”, dijo Boluwaji A. Akinnuwesi, profesor asociado en el Departamento de Ciencias Informáticas en la Universidad de Eswatini. “Usar estos algoritmos es una mejor opción que exponer a los pacientes a rayos X, que, además, no siempre son fácilmente accesibles. Los tres algoritmos de mejor rendimiento tienen el potencial de convertirse en un software ampliamente disponible, lo que aumenta el acceso a un diagnóstico rápido y asequible de la infección por COVID-19, que es particularmente importante para los países de bajos ingresos, como sucede en África”.

Enlace relacionado:
Universidad de Eswatini

Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
4K-3D NIR/ICG Video Endoscope
TIPCAM 1 Rubina
New
Ultrasonic Cleaners
Large-Capacity Ultrasonic Cleaners

Print article

Canales

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.