Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil




Aprendizaje automático podría reducir las hospitalizaciones en un 30% durante pandemias

Por el equipo editorial de HospiMedica en español
Actualizado el 24 Sep 2024
Print article
Imagen: El modelo de aprendizaje automático redujo las hospitalizaciones en aproximadamente un 27% en comparación con la atención real y observada (foto cortesía de 123RF)
Imagen: El modelo de aprendizaje automático redujo las hospitalizaciones en aproximadamente un 27% en comparación con la atención real y observada (foto cortesía de 123RF)

Durante la pandemia de COVID-19, los sistemas de atención sanitaria se vieron llevados al límite y muchos centros recurrieron al orden de llegada o al historial médico del paciente para determinar quién recibía tratamiento. Sin embargo, estos métodos a menudo no tienen en cuenta las complejas interacciones entre los medicamentos y los pacientes, lo que podría pasar por alto a quienes podrían beneficiarse más del tratamiento. Ahora, una nueva investigación sugiere que el aprendizaje automático puede ser una forma más eficaz de asignar tratamientos escasos a pacientes vulnerables durante las crisis de salud pública.

El nuevo estudio realizado por investigadores del Campus Médico Anschutz de la Universidad de Colorado (Aurora, CO, EUA) destaca el potencial del aprendizaje automático para asignar tratamientos médicos de manera más eficiente en tiempos de escasez, como durante una pandemia. La investigación demostró que el aprendizaje automático, al analizar cómo responden los diferentes pacientes al tratamiento, puede proporcionar información más precisa y en tiempo real a los médicos, los sistemas de salud y los funcionarios de salud pública que los métodos de asignación tradicionales. Publicado en la revista JAMA Health Forum, el estudio reveló que el uso del aprendizaje automático para asignar tratamientos de COVID-19 podría reducir las hospitalizaciones en aproximadamente un 27% en comparación con las prácticas actuales.

Los investigadores examinaron específicamente el uso de un nuevo método basado en aprendizaje de árboles de decisión (PLT, por sus siglas en inglés) para optimizar la distribución de anticuerpos monoclonales neutralizantes de COVID-19 durante períodos de disponibilidad limitada. El enfoque PLT fue diseñado para priorizar los tratamientos para las personas con mayor riesgo de hospitalización, maximizando el beneficio general al tener en cuenta las variables que influyen en la efectividad del tratamiento. El modelo de aprendizaje automático se comparó con decisiones de asignación en el mundo real y un sistema estándar basado en puntos utilizado durante la pandemia. Los resultados mostraron que el modelo basado en PLT redujo significativamente las hospitalizaciones esperadas en comparación tanto con las asignaciones observadas y la Puntuación de detección de anticuerpos monoclonales, una herramienta comúnmente utilizada durante la pandemia. Los investigadores esperan que sus hallazgos alienten a las agencias de salud pública, los encargados de formular políticas y las organizaciones de gestión de desastres a explorar el aprendizaje automático como una herramienta para futuras crisis de salud pública, asegurando que los tratamientos se asignen de manera más efectiva cuando los recursos son limitados.

“Los métodos de asignación existentes se dirigen principalmente a los pacientes que tienen un perfil de alto riesgo de hospitalización sin tratamiento. Podrían pasar por alto a los pacientes que se benefician más de los tratamientos”, dijo Mengli Xiao, PhD, profesora adjunta de Bioestadística e Informática, quien desarrolló el sistema de asignación de mAb basado en el aprendizaje automático. “Desarrollamos un sistema de puntos de asignación de mAb basado en estimaciones de heterogeneidad del efecto del tratamiento a partir del aprendizaje automático. Nuestra asignación prioriza las características de los pacientes asociadas con grandes efectos causales del tratamiento, buscando optimizar los beneficios generales del tratamiento cuando los recursos son limitados”.

Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
Monitor Cart
Tryten S5
New
Digital Radiographic System
OMNERA 300M

Print article

Canales

Técnicas Quirúrgicas

ver canal
Imagen: La nueva combinación de tratamiento para el hematoma subdural reduce el riesgo de recurrencia (foto cortesía de la neurocirugía 85 (6): 801-807, diciembre de 2019)

Nueva combinación de cirugía y embolización para hematoma subdural reduce el riesgo de recurrencia

Los hematomas subdurales, que ocurren cuando se produce un sangrado entre el cerebro y su membrana protectora debido a un traumatismo, son comunes en los adultos mayores. Para 2030, se espera que los hematomas... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.