Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil




Eventos

27 ene 2025 - 30 ene 2025
15 feb 2025 - 17 feb 2025

Algoritmo de autoaprendizaje identifica enfermedades vasculares tempranas escaneando fotografías en color de alta resolución del ojo

Por el equipo editorial de HospiMedica en español
Actualizado el 15 Feb 2022
Print article
Imagen: El aprendizaje de instancias múltiples detecta la enfermedad arterial periférica a partir de fotografías de fondo de ojo en color de alta resolución (Fotografía cortesía de Mueller, S. y Wintergerst, M.W.M. et al.)
Imagen: El aprendizaje de instancias múltiples detecta la enfermedad arterial periférica a partir de fotografías de fondo de ojo en color de alta resolución (Fotografía cortesía de Mueller, S. y Wintergerst, M.W.M. et al.)

Los investigadores han desarrollado un método que podría usarse para diagnosticar la aterosclerosis.

Usando un software de autoaprendizaje, los investigadores de la Universidad de Bonn (Bonn, Alemania) pudieron identificar cambios vasculares en pacientes con enfermedad arterial periférica (EAP), a menudo en una etapa temprana. Aunque estas primeras etapas aún no causan síntomas, ya están asociadas con una mayor mortalidad. El algoritmo usó fotos de un órgano que normalmente no se asocia con la EAP: el ojo.

El fondo del ojo está muy bien abastecido de sangre, por lo que los más de 100 millones de fotorreceptores de la retina y las células nerviosas conectadas a ellos pueden hacer su trabajo. Al mismo tiempo, las arterias y venas se pueden observar y fotografiar a través de la pupila sin mucho esfuerzo. Puede ser posible detectar signos tempranos de aterosclerosis (endurecimiento de las arterias) con dicho examen en el futuro. En este caso, los procesos de remodelación crónicos conducen al estrechamiento de los vasos y al endurecimiento de las arterias afectadas. Es la principal causa de infartos y accidentes cerebrovasculares, las causas más frecuentes de muerte en los países industrializados occidentales, así como la EAP. El diagnóstico precoz es muy importante para poder tratar a tiempo a los afectados.

Los investigadores fotografiaron 97 ojos de mujeres y hombres que padecían EAP. Además, el equipo tomó imágenes de la cámara del fondo de 34 ojos de sujetos de control sanos. El equipo usó las imágenes para alimentar una red neuronal convolucional (CNN). Este es un software que está modelado en el cerebro humano en la forma en que funciona. Si una CNN de este tipo se entrena con fotos cuyo contenido es conocido por la computadora, más tarde puede reconocer el contenido de las fotos desconocidas. Sin embargo, para que esto funcione con suficiente certeza, normalmente se necesitan varias decenas de miles de fotos de entrenamiento, muchas más de las que estaban disponibles en el estudio.

"Por lo tanto, primero llevamos a cabo un entrenamiento previo con otra enfermedad que ataca los vasos del ojo", explicó el Prof. Dr. Thomas Schultz del Centro Internacional de Tecnología de la Información de Bonn-Aachen (b-it) y el Instituto de Ciencias de la Computación II en la Universidad de Bonn. Para ello, los investigadores utilizaron un conjunto de datos de más de 80.000 fotos adicionales. "En cierto sentido, el algoritmo aprende de ellos a qué prestar especial atención", dice Schultz, quien también es miembro de las Áreas de Investigación Transdisciplinaria "Modelado" y "Vida y Salud" de la Universidad de Bonn. "Por lo tanto, también hablamos de transferencia de aprendizaje".

La CNN entrenada de esta manera pudo diagnosticar con notable precisión si las fotos de los ojos provenían de un paciente con EAP o de una persona sana.

"Un buen 80 % de todos los individuos afectados fueron identificados correctamente, si tomamos en cuenta el 20 % de falsos positivos, es decir, individuos sanos que el algoritmo clasificó incorrectamente como enfermos", explicó Schultz. "Es increíble, porque incluso los oftalmólogos capacitados no pueden detectar la EAP a partir de las imágenes del fondo de ojo".

En análisis posteriores, los investigadores pudieron demostrar que la red neuronal presta especial atención a los grandes vasos en la parte posterior del ojo durante su evaluación. Sin embargo, para obtener el mejor resultado posible, el método necesitaba imágenes digitales con una resolución suficientemente alta. Los investigadores esperan mejorar aún más el rendimiento de su método en el futuro. Para hacerlo, planean cooperar con los centros de oftalmología y medicina vascular de todo el mundo que les proporcionarán imágenes de fondo de ojo adicionales de las personas afectadas. El objetivo a largo plazo es desarrollar un método de diagnóstico sencillo, rápido y fiable que no requiera procedimientos concomitantes como la administración de colirios.

Related Links:
Universidad de Bonn

Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
LED Examination Lamp
Clarity 50 LED
New
Digital Radiographic System
OMNERA 300M

Print article

Canales

Cuidados Criticos

ver canal
Imagen: La herramienta impulsada por IA podría brindar información crítica en tiempo real sobre la salud infantil que antes era difícil de obtener (Foto cortesía de 123RF)

IA detecta cambios neurológicos graves en bebés de la UCIN utilizando solo datos de vídeo

Cada año, más de 300.000 recién nacidos son ingresados en unidades de cuidados intensivos neonatales (UCIN) en los Estados Unidos. El estado de alerta del bebé es un indicador... Más

Técnicas Quirúrgicas

ver canal
Imagen: Una ilustración del sistema de lentes del endoscopio (foto cortesía de Aamod Shanker/UW ECE)

Nuevo sistema de lentes para endoscopios proporciona visión sin precedentes del interior del cuerpo

El cuerpo humano es una red de conductos complejos e interconectados que atraviesan los sistemas cardiovascular, respiratorio y digestivo. Para los médicos, alcanzar y tratar tejidos enfermos o... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.