Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil




Eventos

27 ene 2025 - 30 ene 2025
15 feb 2025 - 17 feb 2025

Nueva técnica combina aprendizaje automático con imágenes de fluorescencia SWIR para la extirpación quirúrgica precisa de tumores

Por el equipo editorial de HospiMedica en español
Actualizado el 30 Mar 2023
Print article
Imagen: El aprendizaje automático combinado con imágenes infrarrojas multiespectrales puede guiar la cirugía del cáncer (Fotografía cortesía de Pexels)
Imagen: El aprendizaje automático combinado con imágenes infrarrojas multiespectrales puede guiar la cirugía del cáncer (Fotografía cortesía de Pexels)

La extirpación quirúrgica del tumor se mantiene entre los procedimientos comunes para el tratamiento del cáncer, y aproximadamente el 45 % de los pacientes con cáncer se someten a este procedimiento en algún momento. Los avances recientes en las tecnologías bioquímicas y de imágenes han mejorado la capacidad del cirujano para distinguir entre tumores y tejido sano. Una de esas técnicas que permite esta distinción es la "cirugía guiada por fluorescencia" (FGS). Un nuevo estudio propone un método para clasificar células sanas y tumorales utilizando un enfoque independiente de la intensidad. Este método combina el aprendizaje automático con imágenes de fluorescencia infrarroja de onda corta (SWIR) para detectar con precisión los límites de los tumores.

La FGS consiste en teñir el tejido del paciente con un tinte que emite luz infrarroja cuando se irradia con una fuente de luz especial. El tinte se une selectivamente a la superficie de las células tumorales, lo que permite la detección de la ubicación y la extensión del tumor en función de las ondas de luz emitidas. Sin embargo, la mayoría de los métodos basados en FGS se basan en la intensidad absoluta de las emisiones infrarrojas para diferenciar los píxeles correspondientes a los tumores. Este método es problemático ya que la intensidad está influenciada por las condiciones de iluminación, la configuración de la cámara, la cantidad de tinte y la duración de la tinción. Por lo tanto, la clasificación basada en la intensidad puede dar lugar a una interpretación imprecisa.

La nueva técnica desarrollada por investigadores del colegio Universitario de Londres (Londres, Reino Unido) consiste en capturar imágenes SWIR multiespectrales del tejido teñido, en lugar de basarse únicamente en la medición de la intensidad total en una longitud de onda. Para lograr esto, el equipo colocó secuencialmente seis filtros de frecuencia de longitud de onda (color) diferentes frente a su sistema óptico SWIR y registró seis mediciones para cada píxel. Al hacer esto, los investigadores pudieron crear perfiles espectrales para cada tipo de píxel, incluido el fondo, el tejido sano y el tumor. Posteriormente, entrenaron siete modelos de aprendizaje automático para identificar con precisión estos perfiles espectrales en imágenes SWIR multiespectrales.

El equipo de investigación realizó un entrenamiento y validación in vivo de los modelos utilizando imágenes SWIR de un tipo agresivo de neuroblastoma en un modelo de laboratorio. También evaluaron varias técnicas de normalización para hacer que la clasificación de píxeles sea independiente de la intensidad absoluta y dependa únicamente del perfil espectral del píxel. El estudio implicó probar siete modelos de aprendizaje automático, y el modelo de mejor desempeño logró una notable precisión de clasificación por píxel del 97,5 %. Específicamente, las precisiones de los píxeles tumorales, sanos y de fondo fueron del 97,1 %, 93,5 % y 99,2 %, respectivamente.

Además, se descubrió que los resultados del modelo eran muy sólidos frente a las variaciones en las condiciones de imagen debido a la normalización de los perfiles espectrales. Esto es deseable para las aplicaciones clínicas porque las pruebas de nuevas tecnologías de imágenes generalmente se realizan en condiciones ideales que no reflejan el entorno clínico del mundo real. Según sus hallazgos, el equipo de investigación es optimista sobre el potencial de esta metodología. Creen que realizar un estudio piloto para implementarlo en pacientes humanos podría conducir a avances significativos en el campo de la FGS.

La FGS multiespectral tiene el potencial de ir más allá del alcance del estudio actual. Se puede utilizar para eliminar los reflejos no deseados y las luces quirúrgicas o de fondo de las imágenes, además de ofrecer formas no invasivas de medir el contenido de lípidos y la saturación de oxígeno. Los sistemas multiespectrales también permiten el uso simultáneo de múltiples tintes fluorescentes con diferentes características de emisión, ya que las señales de cada tinte se pueden desenredar de las mediciones totales en función de sus perfiles espectrales. Este enfoque de tinción múltiple puede enfocarse en múltiples aspectos de una enfermedad, brindando a los cirujanos aún más información. Sin duda, los estudios futuros explorarán todo el potencial de la FGS multiespectral y abrirán las puertas a procedimientos quirúrgicos más efectivos para tratar el cáncer y otras enfermedades.

Enlaces relacionados:
Colegio Universitario de Londres

Miembro Oro
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
X-ray Diagnostic System
FDX Visionary-A
New
Standing Sling
Sara Flex

Print article

Canales

Cuidados Criticos

ver canal
Imagen: El investigador Vincent Tam examina las bacterias para optimizar el uso clínico de antibióticos para combatirlas (Foto cortesía de UH College of Pharmacy)

Dispositivo de monitoreo podría superar a las superbacterias resistentes a los antibióticos

Las infecciones por bacterias gramnegativas son cada vez más difíciles de tratar, especialmente en entornos hospitalarios, donde pueden provocar afecciones como infecciones del tracto urinario,... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.