Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil




Dispositivos microscópicos envuelven las neuronas para explorar regiones subcelulares del cerebro

Por el equipo editorial de HospiMedica en español
Actualizado el 08 Nov 2024
Print article
Imagen: Los dispositivos de tamaño subcelular podrían usarse para medir o modular la actividad eléctrica de una neurona. (foto cortesía de Pablo Penso, © Marta Airaghi/MIT)
Imagen: Los dispositivos de tamaño subcelular podrían usarse para medir o modular la actividad eléctrica de una neurona. (foto cortesía de Pablo Penso, © Marta Airaghi/MIT)

Los dispositivos portátiles, como los relojes inteligentes y los rastreadores de actividad física, controlan diversas funciones corporales, como la frecuencia cardíaca y los patrones de sueño. Los investigadores ahora han creado dispositivos portátiles microscópicos que podrían ofrecer capacidades similares para células individuales dentro del cuerpo.

Las células cerebrales exhiben formas complejas lo que dificulta el diseño de implantes bioelectrónicos que se ajusten perfectamente a las neuronas o sus procesos. Por ejemplo, los axones son extensiones delgadas y en forma de cola que se conectan al cuerpo celular de la neurona y pueden variar significativamente en longitud y curvatura. Además, los axones y otros componentes celulares son delicados, lo que requiere que cualquier dispositivo de interfaz sea lo suficientemente blando como para hacer un contacto efectivo sin causar daños. Científicos del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) han desarrollado dispositivos sin batería, de tamaño subcelular, hechos de un polímero blando que puede envolver suavemente varias partes de las neuronas, como axones y dendritas, sin dañar las células cuando se activa de forma inalámbrica con luz. Al envolver cómodamente los procesos neuronales, estos dispositivos podrían medir o modular la actividad eléctrica y metabólica de una neurona a nivel subcelular.

Dado que estos dispositivos son inalámbricos y pueden flotar libremente, los investigadores imaginan un futuro en el que miles de dispositivos diminutos podrían ser inyectados en el cuerpo y activados de manera no invasiva usando luz. Manipulando la intensidad de la luz emitida desde el exterior del cuerpo, los investigadores podrían controlar con precisión cómo los dispositivos envuelven las células. Al rodear los axones, que transmiten impulsos eléctricos entre neuronas y hacia otras partes del cuerpo, podrían ayudar a restaurar parte de la degradación neuronal asociada con enfermedades como la esclerosis múltiple (EM). En condiciones saludables, la mielina actúa como una capa aislante alrededor de los axones, lo que facilita la transmisión eficiente de impulsos eléctricos. En enfermedades no mielinizantes como la EM, las neuronas pierden sus capas aislantes de mielina y, actualmente, no existe un método biológico para regenerarlas. Al funcionar como mielina sintética, estos dispositivos portátiles podrían ayudar a restaurar la función neuronal de los pacientes con EM.

A largo plazo, estos dispositivos podrían integrarse con otros materiales para formar pequeños circuitos capaces de medir y modular células individuales. Los investigadores publicaron sus hallazgos en la revista Nature Communications Chemistry, donde demostraron cómo los dispositivos pueden combinarse con materiales optoeléctricos para estimular las células. Además, se pueden colocar materiales atómicamente finos sobre los dispositivos, lo que les permite enrollarse en microtubos sin romperse. Este avance abre posibilidades para incorporar sensores y circuitos a los dispositivos. Además, su estrecha conexión con las células significa que se requeriría una energía mínima para estimular las regiones subcelulares, lo que potencialmente permitiría a los investigadores o médicos modular la actividad eléctrica de las neuronas para tratar enfermedades cerebrales.

“El concepto y la tecnología de plataforma que presentamos aquí son como una piedra angular que genera inmensas posibilidades para la investigación futura”, dijo Deblina Sarkar, profesora adjunta de Desarrollo Profesional de AT&T en el Media Lab del MIT y autora principal de un artículo sobre esta técnica. “Es emocionante demostrar esta simbiosis de un dispositivo artificial con una célula con una resolución sin precedentes. Hemos demostrado que esta tecnología es posible”.

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
New
Cannulating Sphincterotome
TRUEtome
New
Vertebral Body Replacement System
Hydrolift

Print article

Canales

Cuidados Criticos

ver canal
Imagen: El estudio encontró que retrasar los procedimientos electivos de 3 a 6 meses después de un ataque cardíaco reduce el riesgo de complicaciones para los adultos envejecidos (foto cortesía de 123RF)

Análisis de base de datos identifica el “punto óptimo” para cirugía segura después de un ataque cardíaco

Las pautas perioperatorias de 2014 del Colegio Americano de Cardiología y la Asociación Americana del Corazón recomiendan esperar 60 días después de un ataque cardíaco... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.