Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil




Unas herramientas de datos de salud automatizadas detectan la sepsis en los recién nacidos

Por el equipo editorial de HospiMedica en español
Actualizado el 19 Mar 2019
Print article
Los modelos de aprendizaje automático pueden identificar a los bebés de la unidad de cuidados intensivos neonatales (UCIN) en riesgo de sepsis, horas antes de que los médicos reconozcan la condición potencialmente mortal.

Los investigadores del Hospital Infantil de Filadelfia (CHOP; PA, EUA) realizaron un estudio retrospectivo de casos y controles de 618 lactantes hospitalizados en la UCIN del CHOP entre septiembre de 2014 y noviembre de 2017, que recibieron al menos una evaluación de sepsis antes de los 12 meses de edad; la cohorte de estudio tuvo una mediana de edad gestacional de 34 semanas. Luego, los investigadores desarrollaron una lista de 36 características extraídas de las historias clínicas electrónicas (HCE) que se asociaron o se sospechaba que estaban asociadas con la sepsis infantil, que se agruparon bajo signos vitales, valores de laboratorio, comorbilidades y factores clínicos.

Luego, los investigadores utilizaron la validación cruzada anidada 10 veces para entrenar ocho modelos de aprendizaje automático con el fin de clasificar las entradas como sepsis positiva o negativa. Como los datos provinieron de una muestra retrospectiva de pacientes en las UCIN, los investigadores pudieron comparar cada una de las predicciones del modelo con los hallazgos posteriores de los bebés reales. En el análisis final, seis de los ocho modelos tuvieron un buen desempeño para la predicción exacta de la sepsis hasta cuatro horas antes del reconocimiento clínico de la enfermedad. El estudio fue publicado el 22 de febrero de 2019 en la revista PLOS One.

“Debido a que la detección temprana y la intervención rápida son esenciales en los casos de sepsis, las herramientas de aprendizaje automático como esta ofrecen el potencial de mejorar los resultados clínicos en estos bebés”, dijo el autor principal, Aaron Masino, PhD, del departamento de informática biomédica y de salud. “Los estudios clínicos de seguimiento permitirán a los investigadores evaluar el desempeño de dichos sistemas en un entorno hospitalario. Si la investigación valida algunos de estos modelos, podemos desarrollar una herramienta para respaldar las decisiones clínicas y mejorar los resultados en bebés críticamente enfermos”.

Si bien son relativamente poco frecuentes en bebés sanos a término, las tasas de sepsis son 200 veces más altas en niños prematuros u hospitalizados crónicamente. Los sobrevivientes de sepsis infantil pueden sufrir más adelante problemas a largo plazo, como enfermedad pulmonar crónica, discapacidades del desarrollo neurológico y estancias prolongadas en el hospital. El diagnóstico rápido de sepsis también suele ser difícil en los bebés hospitalizados, debido a los signos clínicos ambiguos y las inexactitudes en las pruebas de detección. Los retrasos en el reconocimiento de la sepsis también pueden causar retrasos en la intervención, incluido el tratamiento con antibióticos y la atención de apoyo.

Enlace relacionado:
Hospital Infantil de Filadelfia

Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
12-Channel ECG
CM1200B
New
Ambulatory Blood Pressure Monitor
ASPEL 308-508 ABPM
New
Medical Magnifier
EX-06

Print article

Canales

Técnicas Quirúrgicas

ver canal
Imagen: La tecnología de Qaelon está diseñada para abordar el impacto devastador de las fugas quirúrgicas (cortesía de la foto de 123RF)

Tecnología innovadora permite la detección rápida de fugas quirúrgicas

Las fugas quirúrgicas pueden tener consecuencias graves para los pacientes, ya que aumentan las tasas de mortalidad, aumentan las posibilidades de recurrencia del cáncer y prolongan las estancias hospitalarias.... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.