Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Sekisui Diagnostics UK Ltd.

Deascargar La Aplicación Móvil




Modelo de RM con IA clasifica los tumores intracraneales comunes

Por el equipo editorial de HospiMedica en español
Actualizado el 15 Sep 2021
Print article
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Imagen: Los colores de los mapas de color de GradCAM muestran la predicción de tumores (Fotografía cortesía de WUSTL)
Un estudio nuevo afirma que un modelo 3D de inteligencia artificial (IA) es capaz de clasificar un tumor cerebral como uno de los seis tipos comunes a partir de un solo examen de resonancia magnética (RM).

Para desarrollar el algoritmo GradCAM, investigadores de la Universidad de Washington (WUSTL; St. Louis, MO, EUA), utilizaron 2.105 exámenes de resonancia magnética ponderadas en T1 de cuatro conjuntos de datos disponibles públicamente, divididos en capacitación (1.396), interna (361) y conjuntos de datos externos (348). Se entrenó una red neuronal convolucional (CNN) para discriminar entre exámenes sanos y aquellos con tumores, clasificados por tipo (glioma de alto grado, glioma de bajo grado, metástasis cerebrales, meningioma, adenoma hipofisario y neuroma acústico). A continuación, se evaluó el desempeño del modelo y se trazaron mapas de características para visualizar la atención de la red.

Los resultados de las pruebas internas mostraron que GradCAM logró una exactitud del 93,35% en siete clases de imágenes (una clase saludable y seis clases de tumores). Las sensibilidades variaron del 91% al 100% y el valor predictivo positivo (VPP) varió del 85% al 100%. El valor predictivo negativo (VPN) osciló entre el 98% y el 100% en todas las clases. La atención de la red se superpuso con las áreas tumorales para todos los tipos de tumores. Para el conjunto de datos de la prueba externa, que incluyó solo dos tipos de tumores (glioma de alto grado y glioma de bajo grado), GradCAM tuvo una exactitud del 91,95%. El estudio fue publicado el 11 de agosto de 2021 en la revista Radiology: Artificial Intelligence.

“Estos resultados sugieren que el aprendizaje profundo es un método prometedor para la clasificación y evaluación automatizadas de tumores cerebrales. El modelo logró una alta exactitud en un conjunto de datos heterogéneo y mostró excelentes capacidades de generalización en datos de prueba invisibles”, dijo el autor principal, Satrajit Chakrabarty, MSc, del departamento de ingeniería eléctrica y de sistemas. “Esta red es el primer paso hacia el desarrollo de un flujo de trabajo de radiología aumentado con inteligencia artificial que puede respaldar la interpretación de imágenes al proporcionar información cuantitativa y estadísticas”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de CNN que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Washington

Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Portable Ventilator
Oxivent Life
New
Cylindrical Water Scanning System
SunSCAN 3D

Print article

Canales

Técnicas Quirúrgicas

ver canal
Imagen: la decisión clínica impulsada por IA tiene como objetivo revolucionar los procedimientos de hígado, pulmón y riñón (foto cortesía de Olympus)

Herramienta de planificación quirúrgica impulsada por IA mejora la planificación preoperatoria

Tradicionalmente, los médicos han dependido de imágenes planas 2D para planificar procedimientos médicos. Ahora, una nueva aplicación aprovecha tecnologías de imagen... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.