Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil




Entrenamiento en elasticidad ayuda a la IA a diagnosticar el cáncer de mama

Por el equipo editorial de HospiMedica en español
Actualizado el 31 Jul 2019
Print article
Según un estudio nuevo, se pueden usar algoritmos de inteligencia artificial (IA) para identificar la heterogeneidad elástica de ultrasonido de un tumor, con el fin de diferenciar los tumores benignos de sus contrapartes malignas.

Investigadores de la Universidad del Sur de California (USC; Los Ángeles, EUA), del Instituto Politécnico Rensselaer (RPI; Troy, Nueva York, EUA) y de otras instituciones, crearon modelos basados en la física que simulaban los niveles variables de las dos propiedades clave de ultrasonido de un tumor de mama canceroso: heterogeneidad elástica y respuesta elástica no lineal. Luego utilizaron miles de entradas de datos derivadas de los modelos para entrenar una red neuronal convolucional (RNC) profunda para clasificar los tumores como malignos o benignos.

Se entrenó una RNC de 5 capas con 8.000 muestras para heterogeneidad, y una RNC de 4 capas con 4.000 muestras para la elasticidad no lineal. Cuando se consultó sobre imágenes sintéticas adicionales, las RNC lograron exactitudes de clasificación de 99,7% a 99,9%. Luego, los investigadores aplicaron el clasificador de elasticidad no lineal, que se entrenó completamente utilizando datos simulados, para clasificar las imágenes de desplazamiento obtenidas de diez pacientes con lesiones mamarias; la RNC clasificó correctamente ocho de cada diez casos.

“El consenso general es que estos tipos de algoritmos tienen un papel importante que desempeñar, incluso de los profesionales de imágenes sobre los que tendrán más impacto”, dijo el autor principal, el profesor, Assad Oberai, PhD, del departamento de ingeniería mecánica y aeroespacial de la USC. “Sin embargo, estos algoritmos serán más útiles cuando no sirven como cajas negras, sino que son una herramienta que ayuda a guiar a los radiólogos a conclusiones más exactas”.

La elastografía se basa en la generación de ondas de corte determinadas por el desplazamiento de los tejidos, inducido por la fuerza de un haz de ultrasonido enfocado o por una presión externa. Las ondas de corte son ondas laterales, con un movimiento perpendicular a la dirección de la fuerza generadora, que viajan lentamente y son atenuadas rápidamente por el tejido. La velocidad de propagación de las ondas de corte se correlaciona con la elasticidad del tejido.

Enlace relacionado:
Universidad del Sur de California
Instituto Politécnico Rensselaer


Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Transcatheter Heart Valve
SAPIEN 3 Ultra
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Print article

Canales

Técnicas Quirúrgicas

ver canal
Imagen: Air Assist tiene como objetivo establecer un nuevo estándar en los procedimientos de colonoscopia (foto cortesía de Gastro Concepts)

Dispositivo desechable innovador revolucionará los procedimientos de colonoscopia

Durante la colonoscopia, la fuga de aire y CO₂ a menudo provoca el colapso del colon, lo que puede prolongar los procedimientos y aumentar tanto los riesgos para el paciente como los costos.... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.