Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil





Investigadores de Yale utilizan el análisis de células individuales y el aprendizaje automático para identificar un objetivo importante de la COVID-19

Por el equipo editorial de HospiMedica en español
Actualizado el 31 May 2020
Print article
Imagen: El epitelio respiratorio (Fotografía cortesía de Wikimedia Commons)
Imagen: El epitelio respiratorio (Fotografía cortesía de Wikimedia Commons)
Los científicos de la Facultad de Medicina de Yale (Nueva Haven, CT, EUA) utilizan la secuenciación de ARN unicelular de las células epiteliales bronquiales humanas (HBEC) infectadas para aprender cómo el SARS-CoV-2 infecta y altera las células sanas.

En el estudio, los científicos identificaron las células ciliadas como el objetivo principal de la infección por el SARS-CoV-2. El epitelio bronquial actúa como una barrera protectora contra alérgenos y patógenos. Los cilios eliminan el moco y otras partículas del tracto respiratorio. Sus hallazgos ofrecen una idea de cómo el virus causa la enfermedad. Los científicos infectaron HBEC en una interfaz aire-líquido con SARS-CoV-2. Durante un período de tres días, utilizaron la secuenciación de ARN de una sola célula para identificar las firmas de la dinámica de la infección, como el número de células infectadas en todos los tipos de células y si el SARS-CoV-2 activó una respuesta inmune en las células infectadas.

Los científicos utilizaron algoritmos avanzados para desarrollar hipótesis de trabajo y utilizaron la microscopía electrónica para aprender sobre la base estructural del virus y las células objetivo. Estas observaciones proporcionan información sobre la interacción virus-huésped para medir el tropismo celular del SARS-CoV-2 o la capacidad del virus para infectar diferentes tipos de células, según lo identificado por los algoritmos. Después de tres días, miles de células cultivadas se infectaron. Los científicos analizaron los datos de las células infectadas junto con los de las células vecinas. Observaron que las células ciliadas eran el 83% de las células infectadas. Estas células fueron la fuente primera y principal de infección durante todo el estudio. El virus también se dirigió a otros tipos de células epiteliales, incluidas las células basales y las células club. Las células caliciformes, neuroendocrinas, células tufo e ionocitos tenían menos probabilidades de infectarse.

Las firmas de genes revelaron una respuesta inmune innata asociada con una proteína llamada interleuquina 6 (IL-6). El análisis también mostró un cambio en las transcripciones virales poliadeniladas. Por último, las células espectadoras (no infectadas) también mostraron una respuesta inmune, probablemente debido a las señales de las células infectadas. Extrayendo información de decenas de miles de genes, los algoritmos localizan las diferencias genéticas entre las células infectadas y no infectadas. En la siguiente fase de este estudio, los científicos examinarán la gravedad del SARS-CoV-2 en comparación con otros tipos de coronavirus y realizarán pruebas en modelos animales.

“El aprendizaje automático nos permite generar hipótesis. Es una forma diferente de hacer ciencia. Entramos con la menor cantidad de hipótesis posibles. Medimos todo lo que podamos medir, y los algoritmos nos presentan la hipótesis”, dijo el autor principal, David van Dijk, PhD, profesor asistente de medicina en la Sección de Medicina Cardiovascular y Ciencias de la Computación.

Enlace relacionado:
Facultad de Medicina de Yale

Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Coronary Stent System
Ultimaster Sirolimus
New
Body Composition Analyzer
seca mBCA Pro

Print article

Canales

Cuidados Criticos

ver canal
Imagen: la cápsula de gas Atmo mide los gases a medida que viajan a través del tracto gastrointestinal y transmite los datos de forma inalámbrica (foto cortesía de Atmo Biosciences)

Una cápsula inteligente ingerible detecta sustancias químicas en el intestino

Los gases intestinales se asocian con diversas afecciones, como el cáncer de colon, el síndrome del intestino irritable y la enfermedad inflamatoria intestinal, y tienen el potencial de servir... Más

Técnicas Quirúrgicas

ver canal
Imagen: el sistema de bypass cardíaco Elana está diseñado para hacer que la sutura sea obsoleta (foto cortesía de AMT Medical)

Tecnología de bypass coronario sin suturas elimina la necesidad de cirugías a corazón abierto

En pacientes con enfermedad de las arterias coronarias, ciertos vasos sanguíneos pueden estar estrechados o bloqueados, lo que requiere la colocación de un stent o la realización de... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.