Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Modelo de IA predice con precisión la supervivencia en la terapia de reemplazo renal continua

Por el equipo editorial de HospiMedica en español
Actualizado el 19 Jul 2024

La terapia de reemplazo renal continua (CRRT, por sus siglas en inglés) es un tipo de diálisis que se usa para pacientes gravemente enfermos que no pueden someterse a hemodiálisis regular. Aunque la CRRT se ha utilizado durante muchas décadas, todavía no existe un conjunto de pautas clínicas universalmente aceptadas para que los médicos determinen cuándo iniciar la CRRT para garantizar un resultado positivo. La decisión de comenzar la CRRT generalmente se basa en la evaluación del médico sobre la historia clínica del paciente, signos vitales, resultados de laboratorio y medicamentos. Dada la gravedad de la enfermedad de estos pacientes, siempre existe cierto grado de incertidumbre sobre su supervivencia durante o después del tratamiento. Se estima que alrededor del 50 % de los adultos que se someten a CRRT no sobreviven, lo que hace que el tratamiento sea potencialmente inútil para estos pacientes y sus familias. Ahora, se ha desarrollado un nuevo modelo de aprendizaje automático que puede predecir con precisión la supervivencia a corto plazo de los pacientes sometidos a CRRT.

El modelo de aprendizaje automático desarrollado por investigadores de la Universidad de California en Los Ángeles (UCLA, Los Ángeles, CA, EUA) ayuda a los médicos a decidir si un paciente debe iniciar CRRT mediante el uso de datos de miles de registros médicos electrónicos de pacientes para predecir la probabilidad de supervivencia después de CRRT. A diferencia de modelos anteriores que solo predicen la mortalidad hospitalaria después de iniciar la CRRT, esta herramienta innovadora proporciona a los clínicos información sobre si iniciar o no la CRRT desde el principio.

El modelo ofrece una herramienta basada en datos para ayudar en la toma de decisiones clínicas. Utiliza técnicas avanzadas de aprendizaje automático para examinar una gran y compleja gama de datos de pacientes, una tarea que tradicionalmente ha sido un desafío para los médicos. El estudio ilustra el potencial de integrar modelos de aprendizaje automático en la atención sanitaria, mejorar la eficacia del tratamiento y optimizar el uso de los recursos médicos.

"La CRRT se utiliza a menudo como último recurso, pero muchos pacientes no sobreviven, lo que genera un desperdicio de recursos y falsas esperanzas para las familias", dijo el Dr. Ira Kurtz, jefe de la División de Nefrología de UCLA y autor principal del estudio. “Al permitir predecir qué pacientes se beneficiarán, el modelo pretende mejorar los resultados de los pacientes y el uso de recursos, sirviendo como base para probar su utilidad en futuros ensayos clínicos. Como todos los modelos de aprendizaje automático, es necesario probarlo en el mundo real para determinar si es igualmente preciso en sus predicciones en pacientes en los que no fue entrenado”.

Enlaces relacionados:
UCLA

Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
New
Patient Monitor
Vista 300
New
Automated Cough Assist Device
Bionic Cough Simulator
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Técnicas Quirúrgicas

ver canal
Imagen: las imágenes intravasculares pueden mejorar los resultados de los procedimientos complejos de colocación de stents en pacientes con enfermedad coronaria calcificada de alto riesgo (foto cortesía de Shutterstock)

Las imágenes intravasculares mejoran la seguridad en la implantación de stents

Los pacientes diagnosticados con enfermedad coronaria arterial, causada por la acumulación de placa en las arterias, se someten con frecuencia a una intervención coronaria percutánea (ICP).... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.