Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
ARAB HEALTH - INFORMA

Deascargar La Aplicación Móvil





Prueba COVID-19 combina imágenes microscópicas sin etiquetas e IA para brindar resultados rápidos y exactos

Por el equipo editorial de HospiMedica en español
Actualizado el 15 Sep 2021
Print article
Imagen: La IA discernió entre cuatro partículas: SARS-CoV-2, H1N1, HAdV y ZIKV. El ensayo preclínico tuvo una tasa de éxito del 96% para la detección y clasificación del SARS-CoV-2 (Fotografía cortesía del Instituto Beckman de Ciencia y Tecnología Avanzadas)
Imagen: La IA discernió entre cuatro partículas: SARS-CoV-2, H1N1, HAdV y ZIKV. El ensayo preclínico tuvo una tasa de éxito del 96% para la detección y clasificación del SARS-CoV-2 (Fotografía cortesía del Instituto Beckman de Ciencia y Tecnología Avanzadas)
Una prueba nueva para la COVID-19 combina imágenes microscópicas sin etiquetas con inteligencia artificial (IA) para detectar y clasificar rápidamente el virus SARS-CoV-2.

Investigadores del Instituto Beckman de Ciencia y Tecnología Avanzadas de la Universidad de Illinois en Urbana-Champaign (Champaign, IL, EUA) emparejaron la microscopía con la IA para desarrollar la nueva prueba COVID-19 que es rápida, exacta y rentable.

El equipo observó que, si bien actualmente existen muchas técnicas para el análisis del SARS-CoV-2, ninguna utiliza un enfoque óptico sin etiquetas. El tamaño minúsculo de una sola partícula hace que depender solo de la vista sea casi imposible, incluso con un microscopio. La microscopía electrónica es útil para obtener imágenes de la estructura de una partícula, pero se requiere una preparación extensa para garantizar la visibilidad de una muestra. Aunque es necesario, este proceso puede oscurecer la imagen deseada. Los investigadores recurrieron a una técnica desarrollada en Beckman normalmente reservada para visualizar células: la microscopía de imagen de luz espacial, que facilita la obtención de imágenes sin reactivos químicos (o sin etiquetas).

“Aplicar SLIM para la generación de imágenes de virus es como mirar algo sin las gafas puestas. La imagen es borrosa debido a que los virus son más pequeños que el límite de difracción”, dijo Neha Goswami, estudiante de posgrado en bioingeniería y receptora de la Beca Conmemorativa Nadine Barrie Smith del Instituto Beckman en 2021. “Sin embargo, debido a la alta sensibilidad de SLIM, no solo podemos detectar los virus, sino también diferenciar entre distintos tipos”.

Los investigadores identificaron una forma creativa de identificar los virus basándose en datos SLIM: la IA. Con el entrenamiento adecuado, se puede programar una red neuronal profunda avanzada para reconocer incluso las imágenes más borrosas. Presentaron el programa de IA a un par de imágenes: una partícula de SARS-CoV-2 teñida que produce fluorescencia y una imagen de fase capturada con un microscopio multimodal de fluorescencia-SLIM. El entrenamiento de la IA le permite reconocer estas imágenes como una y la misma. Fácilmente reconocible, la imagen teñida de fluorescencia funciona como ruedas de entrenamiento; con suficiente repetición, la máquina aprende a detectar los virus directamente desde las imágenes SLIM sin etiquetas sin el soporte adicional.

Después de la detección viene la diferenciación: discernir el SARS-CoV-2 de otros tipos de virus y partículas. La IA aprendió a discernir entre el SARS-CoV-2 y otros patógenos virales como el H1N1 o la influenza A; el HAdV o adenovirus y el ZIKV o virus Zika. El ensayo preclínico fue muy exitoso, obteniendo una tasa de éxito del 96% para la detección y clasificación del SARS-CoV-2. El objetivo del proyecto es un sistema de detección de prueba de aliento viral sensible y específico que ayude en el diagnóstico viral y en las estrategias de prevención de la transmisión; hoy, esto podría tomar la forma de una prueba COVID-19 rápida, de alto rendimiento y bajo costo con el potencial de portabilidad y acción en el punto de atención.

Con la validación clínica pendiente, los investigadores especulan que una prueba de COVID-19 realizada con este método se vería así: el sujeto usaría un protector facial, sobre el cual se colocaría un portaobjetos de vidrio transparente; luego completan una actividad en la que su respiración se fija a la lámina (como leer un párrafo en voz alta). Se obtendrían imágenes de la lámina y cualquier partícula adherida y se analizarían para detectar cualquier virus presente.

“Hay dos ventajas clave para este tipo de prueba COVID”, dijo Goswami. “La primera es la velocidad: la duración puede ser del orden de un minuto. La segunda es que no estamos agregando productos químicos ni modificaciones a las muestras proporcionadas. Todo lo que pagaríamos es el costo del protector facial y de la lámina”.

Enlace relacionado:
Universidad de Illinois en Urbana-Champaign

Miembro Oro
12-Channel ECG
CM1200B
Miembro Oro
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Canales

Cuidados Criticos

ver canal
Imagen: El investigador Vincent Tam examina las bacterias para optimizar el uso clínico de antibióticos para combatirlas (Foto cortesía de UH College of Pharmacy)

Dispositivo de monitoreo podría superar a las superbacterias resistentes a los antibióticos

Las infecciones por bacterias gramnegativas son cada vez más difíciles de tratar, especialmente en entornos hospitalarios, donde pueden provocar afecciones como infecciones del tracto urinario,... Más

Técnicas Quirúrgicas

ver canal
Imagen: los electrodos de catéter se pueden entregar y guiar hacia los espacios ventriculares y la superficie del cerebro para la estimulación eléctrica (foto cortesía de la Universidad Rice)

Interfaz neural novedosa ayuda a diagnosticar y tratar trastornos neurológicos con riesgos quirúrgicos mínimos

Los métodos tradicionales para interactuar con el sistema nervioso generalmente implican crear una abertura en el cráneo para acceder al cerebro. Ahora, los investigadores han presentado... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: El primer modelo específico de la institución proporciona una ventaja de desempeñoa significativa sobre los modelos actuales basados en la población (Fotografía cortesía de Mount Sinai)

Modelo de aprendizaje automático mejora predicción del riesgo de mortalidad para pacientes de cirugía cardíaca

Se han implementado algoritmos de aprendizaje automático para crear modelos predictivos en varios campos médicos, y algunos han demostrado mejores resultados en comparación con sus... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.