Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil





Herramienta de inteligencia artificial (IA) predice la necesidad de oxígeno de los pacientes hospitalizados con COVID-19 en cualquier parte del mundo

Por el equipo editorial de HospiMedica en español
Actualizado el 22 Sep 2021
Print article
ilustración
ilustración
Los investigadores han utilizado inteligencia artificial (IA) para predecir las necesidades de oxígeno de los pacientes con COVID-19 a escala global.

El Hospital de Addenbrooke (Cambridge, Inglaterra), junto con otros 20 hospitales de todo el mundo y la empresa de tecnología de inteligencia artificial NVIDIA (Santa Clara, CA, EUA), crearon una herramienta de inteligencia artificial para predecir cuánto oxígeno adicional puede necesitar un paciente con COVID-19 en los primeros días de atención hospitalaria, utilizando datos de cuatro continentes. La técnica, conocida como aprendizaje federado, utilizó un algoritmo para analizar radiografías de tórax y datos electrónicos de salud de pacientes hospitalarios con síntomas de COVID-19.

Para mantener la estricta confidencialidad del paciente, los datos del paciente se anonimizaron por completo y se envió un algoritmo a cada hospital para que ningún dato fuese compartido o abandonara su ubicación. Una vez que el algoritmo “aprendió” de los datos, el análisis se reunió para construir una herramienta de inteligencia artificial que pudiera predecir las necesidades de oxígeno de los pacientes hospitalizados con COVID-19 en cualquier parte del mundo. El estudio denominado EXAM (por EMR CXR AI Modelo), fue uno de los estudios de aprendizaje clínico federado más grandes y diversos hasta la fecha. Para comprobar la exactitud de EXAM, se probó en varios hospitales de los cinco continentes. En el estudio se analizaron los resultados de alrededor de 10.000 pacientes con COVID-19 de todo el mundo. Los resultados mostraron que predijo el oxígeno necesario dentro de las 24 horas posteriores a la llegada del paciente al departamento de emergencias, con una sensibilidad del 95% y una especificidad de más del 88%.

“El aprendizaje federado tiene un poder transformador para llevar la innovación de la IA al flujo de trabajo clínico”, dijo la profesora, Fiona Gilbert, quien dirigió el estudio. “Nuestro trabajo continuo con EXAM demuestra que este tipo de colaboraciones globales son repetibles y más eficientes, de modo que podamos satisfacer las necesidades de los médicos para abordar desafíos de salud complejos y epidemias futuras”.

“Por lo general, en el desarrollo de la IA, cuando se crea un algoritmo con los datos de un hospital, no funciona bien en ningún otro hospital”, dijo el Dr. Ittai Dayan, primer autor del estudio. “Al desarrollar el modelo EXAM utilizando aprendizaje federado y datos objetivos y multimodales de diferentes continentes, pudimos construir un modelo generalizable que puede ayudar a los médicos de primera línea en todo el mundo”.

Enlace relacionado:
Hospital de Addenbrooke

Miembro Oro
12-Channel ECG
CM1200B
Miembro Oro
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Electrocardiograph
BeneHeart R700/R900
New
Multi-Parameter Patient Monitor
S90

Print article

Canales

Cuidados Criticos

ver canal
Imagen: las opciones de tratamiento actuales para pacientes con epilepsia resistente a los medicamentos incluyen procedimientos quirúrgicos (foto cortesía de Mayo Clinic)

Tratamiento neuro-restaurativo ofrece esperanza para las formas más graves de epilepsia

La epilepsia afecta a aproximadamente 50 millones de personas en todo el mundo, y alrededor del 30 % de ellas, o aproximadamente 15 millones, padecen epilepsia resistente a fármacos (EFR).... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.